
LLMOps: Taming Probabilistic
Systems

Travis Frisinger

Technical Director of AI at 8th Light

About Me
25 years in tech 4 from Mainframe Operator to Fractional CTO

Leading 70 engineers through adoption of AI-assisted development practices

Advising Fortune 500 executives on bringing AI into products and rethinking how software gets built

Operating at the edge of practice 4 architecting, coding, and mentoring alongside teams

Contributing to industry thought leadership 4 authoring white papers, talks, and the AiBuddy.Software blog

How I Use LLMs
Partner in Thought ³ Use LLMs as collaborators for strategy, ideation, and problem-framing

AI-Assisted Development ³ Apply LLMs in the software lifecycle: coding, testing, docs, reviews

AI in Product ³ Embed LLMs directly into customer-facing features and experiences

The Evolving Landscape of Operations: From Code to
Cognition
The journey of building robust software has constantly evolved.

Release Engineering
The days of hand scripted deployments and long nights.

DevOps: Traditional Systems
Automating software delivery for predictable, deterministic code and
infrastructure.

MLOps: Machine Learning
Extending practices to manage models, data pipelines, and experimental
workflows at scale.

LLMOps: Large Language Models
Extending DevOps and MLOps practices to manage prompts, context,
memory, and orchestration for probabilistic systems.

Why LLMs Break Classic Ops
Unbounded Request

Fan out across layers and models

Moving Targets
Silent updates and weight changes

Opaque Internals
Internals of LLMs not completely understood

New Ops Concerns

Model Updates
Your app changes overnight.

Hallucinations
Truth is not guaranteed. Grounding helps.

Prompt Fragility
Tiny tweaks, unstable behavior.

Compliance Surface
Prompt, inputs, context, and response all affect risk posture.

Evaluations
Testing gives way to eval pipelines.

LLMs: A New Runtime, Not Just a
Tool

LLMs are not just tools you call.

They're dynamic, latent-space runtimes where behavior is shaped by
prompt design, user context, retrieval.

From Deterministic Code to Probabilistic Cognition
How do we continue the evolution.

DevOps
Pipelines (repeatable flows)

Logs & Metrics (deterministic signals)

Observability (traceable execution)

FinOps (linear scaling)

Security & Compliance (known boundaries)

LLMOps Adds
Prompt Management (Language as code)

LLM Routing & Policy Control (multi-model, auth, governance)

Hallucination Detection

Latency Monitoring

Evaluation Pipelines (new CI: judges, human-in-loop, synthetic evals)

Context (retrieval, memory, orchestration create heavy data
dependencies)

The LLMOps Stack: From Access to Accountability

Governance & Oversight
Explainability, auditability, (NIST, ISO)

Observability & Evaluation
Cost, latency, hallucination detection, quality metrics

Context
Retrieval, orchestration, memory, prompt management

Access & Control (Ingress)
Auth, rate limits, proxying, multi-model routing

Ingress: Traffic Control at the
Edge

LLM gateways provide the enforcement layer for LLM access, usage,
and routing.
They9re the foundation of operational control in LLM systems.
In providing services around user authentication, request throttling,
and call routing across providers, providing observability hooks

LLM Gateway: Key Characteristics
Auth

Centralized authentication and authorization for all LLM calls.

Ensures requests are tied to identity and role (who is asking, what
they can access).

Observability

Full visibility into usage: requests, responses, latency, errors.

Supports downstream analysis (cost tracking, model performance,
data safety).

Proxying

Acts as the traffic manager between clients and multiple LLMs.

Enables load balancing, failover, and routing across providers or
models.

Governance

Centralized Model Authentication and Authorization

Guardrails: filter sensitive data, redact PII, apply safety classifiers.

Portkey
Url: https://portkey.ai/

' Auth & Rate Limits: API key management, usage quotas, and
policy enforcement.

' Proxying: Multi-provider routing, retries, fallback.

o Context Layer: No retrieval/orchestration built-in.

' Observability: Cost dashboards, latency metrics.

¦ Governance: Org/team-level quotas, key-level permissions.

Why:

Strong Ingress (auth, rate limits, proxying) with some observability.

Useful if your immediate need is traffic control + cost monitoring,
not full-stack orchestration.

Stops short at context + governance, so better as a building block,
not a full platform.

https://portkey.ai/

LiteLLM
Url: https://www.litellm.ai/

' Auth & Rate Limits: API key management, usage quotas, and
policy enforcement.

' Proxying: Multi-provider routing, retries, fallback.

' Context Layer: They have a request pipeline hooks to inject
context.

¦ Observability: Logs & cost tracking, but not deep evaluation/trace.

' Governance: Org/team-level quotas, key-level permissions.

Why:

Broader coverage than Portkey: strong Ingress plus Governance-lite
(quotas, permissions).

Unique Context hooks via request pipelines, giving a path toward
orchestration.

Still shallow on Observability, so not a full reliability layer yet.

https://www.litellm.ai/

TensorZero
Url: https://www.tensorzero.com/

' Auth & Rate Limits: API key management, usage quotas, and
policy enforcement.

' Proxying: Multi-provider routing, retries, fallback.

o Context Layer: No retrieval/orchestration built-in.

' Observability: Built-in traces, latency/cost dashboards.

¦ Governance: Still emerging, but designed for enterprise alignment.

Why:

Designed for enterprise alignment: strongest of the three on
Observability and Governance trajectory.

Provides deep traces and cost/latency dashboards out of the box,
which makes it attractive where compliance and auditability matter.

Aimed at ops teams managing risk, not just developers wiring
models together.

Best positioned if you want production reliability and accountability
hooks rather than context experimentation.

https://www.tensorzero.com/

LLM Gateway Comparison
Tool Ingress Context Observability Governance Best Fit

Portkey ' Strong o None ' Strong ' Strong Dev teams needing
routing + cost
control

LiteLLM ' Strong ' Hooks ¦ Lite ' Strong Teams wanting
orchestration +
quotas

TensorZero ' Strong o None ' Strong ¦ Emerging Ops teams,
enterprise reliability

Prompt Playgrounds: The
Forgotten Ingress

Proxies control who gets in.
Playgrounds control what gets in.
They9re the missing ingress for prompt design.

Prompt Playground: Key Characteristics
Playground

Interactive space for rapid prompt iteration.

<What you type is what you test= 4 immediate feedback loops.

Versioning

Prompts treated like code 4 deployment to environments.

Centralized prompt management

Evaluation

Measure quality, bias, or robustness across variants.

Turns prompt tuning from gut feel into data-driven choice.

Observability

Strong logging and tracing 4 every run tied back to a version.

Metrics on cost, latency, and output quality.

Freeplay
Url: https://freeplay.ai/

Playground: Interactive prompt design and iteration.

Versioning: Test packs, regression tracking, CI/CD integrations.

Evaluation: Judge loops, dataset-based eval pipelines.

Observability: Logging and analytics baked in.

Governance: Limited, but supports feedback and QA workflows.

Why:

CI/CD and regression tracking connect prompt iteration directly to
engineering pipelines.

Solid observability baked in, though less deep than Langfuse9s trace-
level detail.

Best fit for teams who need structured evaluation at scale and want
prompt design tied into CI/CD.

https://freeplay.ai/

Langfuse
Url: https://langfuse.com/

Playground: Live prompt testing linked to version control.

Versioning: Templates, rollback, diffs.

Evaluation: A/B tests, eval integrations.

Observability: Strong 4 traces, logs, metrics tied to prompt versions.

Governance: None natively, but ties into team workflows.

Why:

Bridges prompt design with observability, linking prompts directly to
traces, logs, and metrics.

Strong on versioning and rollback, giving teams confidence to
experiment without losing history.

Best fit for teams who want structured prompt iteration tied to
metrics, not just ad-hoc testing.

https://langfuse.com/

Agenta
Url: https://agenta.ai/

Playground: Prompt playground with dataset-driven testing.

Versioning: Prompt lifecycle mgmt, experiment tracking.

Evaluation: A/B testing, multi-model comparisons.

Observability: Monitoring and feedback loop support.

Governance: Minimal, but designed for team use.

Why:

Emphasizes prompt lifecycle management, making it broader than a
one-off playground.

Provides monitoring and feedback loops, but observability is lighter
than Langfuse9s trace depth.

Best fit for teams seeking end-to-end lifecycle management for
prompt-driven apps, not just ad-hoc design or isolated evals.

https://agenta.ai/

PromptLayer
Url: https://www.promptlayer.com/

Playground: Limited 4 more logging-focused than interactive.

Versioning: Logs every prompt + response, replay capability.

Evaluation: Lightweight comparisons via SDK.

Observability: Provides an audit trail of prompt usage.

Governance: None 4 developer-focused tool.

Why:

Best suited for lightweight audit trails, giving teams visibility without
heavy setup.

Strong at logging and replaying prompts/responses, making it useful
for debugging and post-mortems.

Best fit if you need a minimal versioning + observability layer for
prompt evolution, not a full evaluation or lifecycle platform.

https://www.promptlayer.com/

Prompt Playground Comparison
Tool Playground Versioning Evaluation Observability Governance Best Fit

Freeplay ' Interactive
sandbox

' Test packs,
CI/CD

' Judge loops,
dataset evals

¦ Logging +
analytics baked
in

¦ Limited (QA +
feedback)

Teams
prioritizing
evaluation +
CI/CD integration

Langfuse ' Live testing
linked to VCS

' Templates,
rollback, diffs

' A/B tests,
eval integrations

' Strong
(traces/logs tied
to prompts)

o None natively Teams needing
observability +
prompt mgmt

Agenta ' Playground
w/ datasets

' Lifecycle
mgmt,
experiments

' A/B testing,
multi-model

¦ Monitoring +
feedback loops

¦ Minimal
(team
workflows)

Teams seeking
lifecycle mgmt +
migration path

PromptLayer ¦ Limited (log-
focused)

' Logs every
prompt + replay

¦ Lightweight
SDK comps

¦ Audit trail
only

o None Devs wanting
lightweight
versioning +
audit trail

Context: Scaffolding the LLM
Together, the parts, retrieval, orchestration & memory, scaffold the
LLM 4 turning stochastic outputs into usable systems.
Without this scaffolding, an LLM is just raw cognition 4 context
makes it operational.

Context: The Parts

Retrieval
Connects the model to internal and external

knowledge

Orchestration
Structures the workflow and coordinates the

coherence

Memory
Maintains personalization and facts across

sessions

These aren't libraries to be added in. They are operational technologies that must be managed like infra.

Retrieval
Ops Concerns:

Indexing pipelines ³ Continuous ingestion & reindexing at scale

Embedding lifecycle ³ Managing drift, schema evolution, and costly
re-embedding cycles

Scale/backups ³ Distributed infra challenges familiar from
databases, now with vectors and others.

Privacy & access control ³ Who can query what? Retrieval
governance is as critical as model governance.

Technologies:

Vector DBs ³ Pinecone, Weaviate.

Hybrid search ³ Elastic, Neo4j.

MCP ³ Governance-critical: auth, auditing, trusted registries required.

< Everyone thinks retrieval is just plugging in a vector DB. But in reality, it9s data pipelines, lifecycle management and governance. Retrieval isn9t a sidecar4
it9s a first-class operational layer that carries all the old database headaches into the AI era.

Orchestration
Ops Concerns:

Workflow testing ³ CI/CD for agents and reasoning chains 4
keeping prompts, tools, and flows in sync.

Scheduling & dependencies ³ Coordinating multi-agent workflows
with temporal and data dependencies.

Traceability of agent decisions ³ Auditable logs for why an agent
chose a step or tool.

Technologies:

Agent runtimes (LangGraph, Autogen, CrewAI, Custom Code)

Memory
Ops Concerns:

TTL & pruning policies ³ Prevent runaway growth; memory isn9t
infinite.

Snapshotting & replay ³ Enable audit trails and reproducibility for
personalization.

Cost/performance trade-offs ³ Balancing short-term vs long-term
recall under budget constraints.

Secure handling of histories ³ User-specific memory must align
with privacy, compliance, and trust requirements.

Technologies:

Vector DBs reused for state (Pinecone, Weaviate, Milvus).

Graph DBs (Neo4j, TigerGraph) for structured, relational memory.

Custom memory stores (MemGPT, LangChain memory, Redis-style
buffers).

Hybrid memory models (embedding + symbolic approaches, e.g.,
knowledge graphs with embeddings).

< Memory turns ephemeral chat into persistent systems, but like any datastore, it comes with cost, governance, and lifecycle headaches.

Observability: From Black Box to
Glass Box

Observability in LLM systems means being able to track spend by
key, team, or application, while also tracking responsiveness across
prompts and models.

It includes the capabilities to see reasoning chains, tool use, and
context applied, and to detect regressions, measure quality, and
validate behavior so systems remain reliable over time.

Observability : The Parts
Cost
Management by key/team

Latency
Measuring prompt responsiveness

Traceability
See the conversational chain with context

Evaluations
Detect regressions and quality failures

Cost & Latency
Ops Concerns:

Preventing runaway spend through budget enforcement and
guardrails.

Managing latency SLAs per team, model, or endpoint.

Attributing costs directly to prompts, teams, and workflows for
accountability.

Technologies (Ingress):

Portkey ³ Cost dashboards and latency metrics.

LiteLLM ³ Logs with spend attribution by team/org.

TensorZero ³ Built-in latency/cost tracing with enterprise tilt.

< Gateways aren9t just traffic cops 4 they9re your first observability layer.

Traceability
Ops Concerns:

Following a request from proxy ³ retrieval ³ agent ³ LLM.

Debugging: why did this response fail?

Sampling vs. full logs (observability b infinite logging).

Technologies (Ingress + Playgrounds):

Langfuse ³ Traces tied to prompt versions.

Freeplay ³ Judge loop results logged against history.

TensorZero ³ Structured inference traces.

Evaluation
Ops Concerns:

Regression testing on every prompt change (catch silent breakage
early).

Bias & hallucination detection feeding back into Governance
pipelines.

Automated evals in CI/CD 4 shifting quality checks left into delivery.

Technologies (Playgrounds + Frameworks):

Freeplay ³ Regression packs + judge-based eval loops.

Langfuse ³ A/B testing, eval hooks integrated into observability.

Agenta ³ Dataset-driven prompt testing and experiment lifecycle.

TruLens ³ Open source framework, not a platform

Ragas ³ Another open source framework, not a platform

< Evaluation isn9t just metrics 4 it9s observability aimed at quality. Without it, you9re shipping blind.

Evaluation: Measuring What
Matters
Different eval types capture different failure modes 4 from silent breakage to bias and
trust.

Regression 3 Golden datasets, catching silent prompt breakage.

A/B Testing 3 Comparing prompts, models, or chains head-to-head.

Behavioral 3 Bias, hallucination, safety, jailbreak stress-tests.

LLM as Judge 3 Scalable evals using models to grade outputs.

Governance: Oversight for LLMs
Governance is not another dashboard 4 it9s the layer that decides
how systems should behave, who is allowed to use what, and
whether they align with standards of safety and fairness.

Governance: The Parts
Permissions
Who can access which models, data, and
prompts.

Risk and Bias
Detect hallucinations, toxicity, fairness issues.

Compliance
Align with NIST, ISO, internal policy.

Traceability, Explainability & Trust
Auditable chains of reasoning and decision context.

Risk and Bias: Evals, Red teaming and Guardrails
Risk and bias aren9t theoretical 4 they surface when systems are probed, stressed, and measured.

Evals 3 Bias, safety, robustness testing to surface problems.

Red Teaming 3 Human + automated probing to stress systems.

promptfoo: https://www.promptfoo.dev/

Guardrails 3 Filtering, moderation, and access limits to contain risks.

< Evals find issues. Red teaming pushes limits. Guardrails keep systems safe in production.

https://www.promptfoo.dev/

 Traceability, Explainabilty and Trust
Traceability 3 Follow the path

Explainability 3 Make the path human.

Trust 3 The payoff. When you can trace and explain, stakeholders gain confidence that the system is auditable, reliable, and aligned. Without it, AI never
scales past proof-of-concept.

Key Takeaways
Ingress gives you control (who gets in).

Context makes it usable (retrieval, memory, orchestration).

Observability makes it measurable (cost, latency, quality, risk).

Governance makes it trustworthy (explainability, compliance, oversight).

< We9ve seen that LLMOps isn9t about plumbing, it9s about trust. From access to
accountability, every layer we build 4 ingress, context, observability, governance 4 is a step
toward systems people can rely on. If DevOps was how we shipped code, LLMOps is how
we9ll ship cognition.

Thank you!

Connect with me on LinkedIn

 Visit my blog aibuddy.software

https://www.linkedin.com/in/travis-frisinger
https://aibuddy.software/

