LLMOps: Taming Probabillistic
Systems

Travis Frisinger

Technical Director of Al at 8th Light

8%

About Me

e 25years in tech — from Mainframe Operator to Fractional CTO

* Leading 70 engineers through adoption of Al-assisted development practices

e Advising Fortune 500 executives on bringing Al into products and rethinking how software gets built
e Operating at the edge of practice — architecting, coding, and mentoring alongside teams

e Contributing to industry thought leadership — authoring white papers, talks, and the AiBuddy.Software blog

How | Use LLMsS

e Partner in Thought — Use LLMs as collaborators for strategy, ideation, and problem-framing
e Al-Assisted Development — Apply LLMs in the software lifecycle: coding, testing, docs, reviews

e AlinProduct = Embed LLMs directly into customer-facing features and experiences

The Evolving Landscape of Operations: From Code to
Cognition

The journey of building robust software has constantly evolved.

) &9 > %

Release Engineering DevOps: Traditional Systems

The days of hand scripted deployments and long nights. Automating software delivery for predictable, deterministic code and
infrastructure.

MLOps: Machine Learning LLMOps: Large Language Models

Extending practices to manage models, data pipelines, and experimental Extending DevOps and MLOps practices to manage prompts, context,

workflows at scale. memory, and orchestration for probabilistic systems.

Why LLMs Break Classic Ops

New Ops Concerns

—— 00— —0—

Model Updates Hallucinations Prompt Fragility
Your app changes overnight. Truth is not guaranteed. Grounding helps. Tiny tweaks, unstable behavior.
L

Compliance Surface Evaluations

Prompt, inputs, context, and response all affect risk posture. Testing gives way to eval pipelines.

LLMs: A New Runtime, Not Just a
Tool

LLMs are not just tools you call.

They're dynamic, latent-space runtimes where behavior is shaped by
prompt design, user context, retrieval.

From Deterministic Code to Probabilistic Cognition

How do we continue the evolution.

DevOps

» Pipelines (repeatable flows)

Logs & Metrics (deterministic signals)

Observability (traceable execution)

FinOps (linear scaling)

Security & Compliance (known boundaries)

LLMOps Adds

* Prompt Management (Language as code)

e LLM Routing & Policy Control (multi-model, auth, governance)

* Hallucination Detection

e Latency Monitoring

e Evaluation Pipelines (new Cl: judges, human-in-loop, synthetic evals)

» Context (retrieval, memory, orchestration create heavy data
dependencies)

The LLMOps Stack: From Access to Accountability

Context

Retrieval, orchestration, memory, prompt management

Access & Control (Ingress)

Auth, rate limits, proxying, multi-model routing

Ingress: Traffic Control at the
Edge

LLM gateways provide the enforcement layer for LLM access, usage,
and routing.

They're the foundation of operational control in LLM systems.

In providing services around user authentication, request throttling,
and call routing across providers, providing observability hooks

LLM Gateway: Key Characteristics

Auth Observability

e Centralized authentication and authorization for all LLM calls. e Full visibility into usage: requests, responses, latency, errors.

e Ensures requests are tied to identity and role (who is asking, what e Supports downstream analysis (cost tracking, model performance,
they can access). data safety).

Proxying Governance

e Acts as the traffic manager between clients and multiple LLMs. e (Centralized Model Authentication and Authorization

e Enables load balancing, failover, and routing across providers or e Guardrails: filter sensitive data, redact Pll, apply safety classifiers.

models.

Portkey

Url: https:/portkey.ai/

M Auth & Rate Limits: API key management, usage quotas, and
policy enforcement.

W Proxying: Multi-provider routing, retries, fallback.
>{ Context Layer: No retrieval/orchestration built-in.
WM Observability: Cost dashboards, latency metrics.

A\ Governance: Org/team-level quotas, key-level permissions.

Why:

Strong Ingress (auth, rate limits, proxying) with some observability.

Useful if your immediate need is traffic control + cost monitoring,
not full-stack orchestration.

Stops short at context + governance, so better as a building block,
not a full platform.

https://portkey.ai/

LiteLLM

Url: https:/www.litelim.ai/

M Auth & Rate Limits: AP| key management, usage quotas, and
policy enforcement.

WM Proxying: Multi-provider routing, retries, fallback.

WM Context Layer: They have a request pipeline hooks to inject
context.

A\ Observability: Logs & cost tracking, but not deep evaluation/trace.

M Governance: Org/team-level quotas, key-level permissions.

Why:

Broader coverage than Portkey: strong Ingress plus Governance-lite
(quotas, permissions).

Unigue Context hooks via request pipelines, giving a path toward
orchestration.

Still shallow on Observability, so not a full reliability layer yet.

https://www.litellm.ai/

TensorZero

Url: https:/www.tensorzero.com/

M Auth & Rate Limits: API key management, usage quotas, and
policy enforcement.

WM Proxying: Multi-provider routing, retries, fallback.
>{ Context Layer: No retrieval/orchestration built-in.

W Observability: Built-in traces, latency/cost dashboards.

A\ Governance: Still emerging, but designed for enterprise alignment.

Why:

Designed for enterprise alignment: strongest of the three on
Observability and Governance trajectory.

Provides deep traces and cost/latency dashboards out of the box,
which makes it attractive where compliance and auditability matter.
Aimed at ops teams managing risk, not just developers wiring
models together.

Best positioned if you want production reliability and accountability
hooks rather than context experimentation.

https://www.tensorzero.com/

LLM Gateway Comparison

Tool Ingress

Portkey WM Strong
LiteLLM WM Strong
TensorZero M Strong

Context

>{ None

W Hooks

>{ None

Observability

W strong

A Lite

W Strong

Governance

M Strong

WM Strong

A Emerging

Best Fit

Dev teams needing
routing + cost
elelplife]

Teams wanting
orchestration +
guotas

Ops teams,
enterprise reliability

Prompt Playgrounds: The
Forgotten Ingress

Proxies control who gets in.
Playgrounds control what gets in.
They're the missing ingress for prompt design.

Prompt Playground: Key Characteristics

Playground Versioning

* |Interactive space for rapid prompt iteration. * Prompts treated like code — deployment to environments.

e “What you type is what you test” — immediate feedback loops. e Centralized prompt management

Evaluation Observability

e Measure quality, bias, or robustness across variants. e Strong logging and tracing — every run tied back to a version.

e Turns prompt tuning from gut feel into data-driven choice. e Metrics on cost, latency, and output quality.

Freeplay

Url: https:/freeplay.ai/

Playground: Interactive prompt design and iteration.
Versioning: Test packs, regression tracking, Cl/CD integrations.
Evaluation: Judge loops, dataset-based eval pipelines.

Observability: Logging and analytics baked in.

Governance: Limited, but supports feedback and QA workflows.

Why:

CI/CD and regression tracking connect prompt iteration directly to
engineering pipelines.

Solid observability baked in, though less deep than Langfuse's trace-
level detail.

Best fit for teams who need structured evaluation at scale and want
prompt design tied into CI/CD.

https://freeplay.ai/

Langfuse

Url: https:/langfuse.com/

Playground: Live prompt testing linked to version control.
Versioning: Templates, rollback, diffs.

Evaluation: A/B tests, eval integrations.

Observability: Strong — traces, logs, metrics tied to prompt versions.

Governance: None natively, but ties into team workflows.

Why:
e Bridges prompt design with observability, linking prompts directly to
traces, logs, and metrics.

e Strong on versioning and rollback, giving teams confidence to
experiment without losing history.

e Best fit for teams who want structured prompt iteration tied to
metrics, not just ad-hoc testing.

https://langfuse.com/

Agenta

Url: https://agenta.ai/

Playground: Prompt playground with dataset-driven testing.

Versioning: Prompt lifecycle mgmt, experiment tracking.
Evaluation: A/B testing, multi-model comparisons.
Observability: Monitoring and feedback loop support.

Governance: Minimal, but designed for team use.

Why:

Emphasizes prompt lifecycle management, making it broader than a
one-off playground.

Provides monitoring and feedback loops, but observability is lighter
than Langfuse’s trace depth.

Best fit for teams seeking end-to-end lifecycle management for
prompt-driven apps, not just ad-hoc design or isolated evals.

https://agenta.ai/

PromptLayer

Url: https:/www.promptlayer.com/

Playground: Limited — more logging-focused than interactive.

Versioning: Logs every prompt + response, replay capability.
Evaluation: Lightweight comparisons via SDK.
Observability: Provides an audit trail of prompt usage.

Governance: None — developer-focused tool.

Why:
e Best suited for lightweight audit trails, giving teams visibility without
heavy setup.

e Strong at logging and replaying prompts/responses, making it useful
for debugging and post-mortems.

e Best fit if you need a minimal versioning + observability layer for
prompt evolution, not a full evaluation or lifecycle platform.

https://www.promptlayer.com/

Prompt Playground Comparison

Tool

Freeplay

Langfuse

Agenta

PromptLayer

Playground

M Interactive
sandbox

M Live testing
I CIeRTAVION

W Playground
w/ datasets

A Limited (log-
focused)

Versioning

W Test packs,
Cl/CD

B Templates,
rollback, diffs

M Lifecycle
mgmt,
experiments

M Logs every
prompt + replay

Evaluation

W Judge loops,
dataset evals

W A/B tests,
eval integrations

M A/B testing,
multi-model

A Lightweight
SDK comps

Observability

A Logging +
analytics baked
in

W Strong
(traces/logs tied
to prompts)

A\ Monitoring +
feedback loops

A Audit trail
only

Governance

A Limited (QA +
feedback)

>{ None natively

A Minimal
(team
workflows)

>{ None

Best Fit

Teams
prioritizing
evaluation +
CI/CD integration

Teams needing
observability +
prompt mgmt

Teams seeking
lifecycle mgmt +
migration path

Devs wanting
lightweight
versioning +
audit trail

\ T L :./._,, /,..4_. : Jﬁr ~ /.,/ ///l././-/ .M—.T %
G ERERAR S AV G ,_/I;Mm e e :
3 A AN < oy AMJHWIV e T el

= _;.../ ./V/J/Aill :& //,14.4»41_, A

the LLM

iNg
Together, the parts, retrieval, orchestration & memory, scaffold the

Scaffold

Without this scaffolding, an LLM is just raw cognition — context

LLM — turning stochastic outputs into usable systems.

makes it operational.

Context

Context: The Parts

These aren't libraries to be added in. They are operational technologies that must be managed like infra.

Retrieval

Ops Concerns: Technologies:
* Indexing pipelines — Continuous ingestion & reindexing at scale e Vector DBs — Pinecone, Weaviate.
* Embedding lifecycle — Managing drift, scherma evolution, and costly e Hybrid search — Elastic, Neo4j.

re-embedding cycles e MCP — Governance-critical: auth, auditing, trusted registries required.

» Scale/backups — Distributed infra challenges familiar from
databases, now with vectors and others.

e Privacy & access control — Who can query what? Retrieval
governance is as critical as model governance.

& Everyone thinks retrieval is just plugging in a vector DB. But in reality, it's data pipelines, lifecycle management and governance. Retrieval isn't a sidecar—
it's a first-class operational layer that carries all the old database headaches into the Al era.

Orchestration

Ops Concerns:

Workflow testing — C//CD for agents and reasoning chains —
keeping prompts, tools, and flows in sync.

Scheduling & dependencies — Coordinating multi-agent workflows
with temporal and data dependencies.

Traceability of agent decisions — Auditable logs for why an agent
chose a step or tool.

Technologies:

Agent runtimes (LangGraph, Autogen, CrewAl, Custom Code)

Memory

Ops Concerns: Technologies:

e TTL & pruning policies = Prevent runaway growth; memory isn't J
infinite. R

* Snapshotting & replay — £nable audit trails and reproducibility for
personalization.

e Cost/performance trade-offs — Balancing short-term vs long-term
recall under budget constraints.

» Secure handling of histories — User-specific memory must align
with privacy, compliance, and trust requirements.

Vector DBs reused for state (Pinecone, Weaviate, Milvus).
Graph DBs (Neo4j, TigerGraph) for structured, relational memory.

Custom memory stores (MemGPT, LangChain memory, Redis-style
buffers).

Hybrid memory models (embedding + symbolic approaches, e.g.,
knowledge graphs with embeddings).

& Memory turns ephemeral chat into persistent systems, but like any datastore, it comes with cost, governance, and lifecycle headaches.

Observability: From Black Box to
Glass Box

Observability in LLM systems means being able to track spend by
key, team, or application, while also tracking responsiveness across
prompts and models.

It includes the capabilities to see reasoning chains, tool use, and
context applied, and to detect regressions, measure quality, and
validate behavior so systems remain reliable over time.

Observabillity : The Parts

Cost

Management by key/team

Latency

Measuring prompt responsiveness

Traceability

See the conversational chain with context

Evaluations

Detect regressions and quality failures

Cost & Latency

Ops Concerns: Technologies (Ingress):

e Preventing runaway spend through budget enforcement and
guardrails.

Portkey — Cost dashboards and latency metrics.

LiteLLM — Logs with spend attribution by team/org.
e Managing latency SLAs per team, model, or endpoint.

TensorZero — Built-in latency/cost tracing with enterprise tilt.
e Attributing costs directly to prompts, teams, and workflows for
accountability.

& Gateways aren't just traffic cops — they're your first observability layer.

Traceabllity

Ops Concerns: Technologies (Ingress + Playgrounds):

e Following a request from proxy — retrieval = agent = LLM. e Langfuse — Traces tied to prompt versions.

e Debugging: why did this response fail? * Freeplay — Judge loop results logged against history.

e Sampling vs. full logs (observability # infinite logging). e TensorZero — Structured inference traces.

Evaluation

Ops Concerns: Technologies (Playgrounds + Frameworks):
* Regression testing on every prompt change (catch silent breakage * Freeplay — Regression packs + judge-based eval loops.
early). e Langfuse — A/B testing, eval hooks integrated into observability.
» Bias & hallucination detection feeding back into Governance « Agenta — Dataset-driven prompt testing and experiment lifecycle.
pipelines.

e Automated evals in CI/CD — shifting quality checks left into delivery.

TruLens — Open source framework, not a platform

Ragas — Another open source framework, not a platform

& Evaluation isn't just metrics — it's observability aimed at quality. Without it, you're shipping blind.

i

Evaluation: Measuring What
Matters

Different eval types capture different failure modes — from silent breakage to bias and

trust.

e Regression — Golden datasets, catching silent prompt breakage.
e A/B Testing — Comparing prompts, models, or chains head-to-head.
e Behavioral — Bias, hallucination, safety, jailbreak stress-tests.

e LLM as Judge — Scalable evals using models to grade outputs.

Governance: Oversight for LLMs

Governance is not another dashboard — it's the layer that decides
how systems should behave, who is allowed to use what, and
whether they align with standards of safety and fairness.

Governance: The Parts

Compliance

Align with NIST, ISO, internal policy.

Risk and Bias: Evals, Red teaming and Guardrails

Risk and bias aren't theoretical — they surface when systems are probed, stressed, and measured.

* Evals — Bias, safety, robustness testing to surface problems.
* Red Teaming — Human + automated probing to stress systems.

o promptfoo: https:/www.promptfoo.dev/

e Guardrails — Filtering, moderation, and access limits to contain risks.

& Evals find issues. Red teaming pushes limits. Guardrails keep systems safe in production.

https://www.promptfoo.dev/

Traceabillity, Explainabilty and Trust

Traceability — Follow the path
Explainability — Make the path human.

Trust — The payoff. When you can trace and explain, stakeholders gain confidence that the system is auditable, reliable, and aligned. Without it, Al never
scales past proof-of-concept.

Key Takeaways

» Ingress gives you control (who gets in).
» Context makes it usable (retrieval, memory, orchestration).
e Observability makes it measurable (cost, latency, quality, risk).

* Governance makes it trustworthy (explainability, compliance, oversight).

& We've seen that LLMOps isn't about plumbing, it's about trust. From access to
accountability, every layer we build — ingress, context, observability, governance — is a step
toward systems people can rely on. If DevOps was how we shipped code, LLMOps is how

we'll ship cognition.

Thank you!

Connect with me on LinkedIn

Visit my blog aibuddy.software

https://www.linkedin.com/in/travis-frisinger
https://aibuddy.software/

